Journal of Fluorine Chemistry 71 (1995) 205 ## An excursion into phosphorus-fluoride chemistry, N(CH₃)₄PF₄, [POF₂]⁻ and M⁺HPF₅⁻ K.O. Christe a,*, W.W. Wilson a, H.P.A. Mercier b, J.C.P. Sanders b, G.J. Schrobilgen b, D.A. Dixon c ^a Rocketdyne, Division of Rockwell International, Canoga Park, CA 91309, USA ^b Department of Chemistry, McMaster University, Hamilton, Ont. L8S 4MI, Canada ^c Central Research Department, DuPont Experimental Station, Wilmington, DE 19880, USA Keywords: Tetramethylammonium phosphorus tetrafluoride; X-Ray diffraction studies; Hydrolysis; Methanolysis; NMR spectroscopy; IR spectroscopy N(CH₃)₄+PF₄, the first example of a PF₄ salt, has been prepared from N(CH₃)₄F and PF₃ using either CH₃CN, CHF₃ or excess PF₃ as a solvent. The salt is a white, crystalline solid which is thermally stable up to 150 °C, where it decomposes to N(CH₃)₃, CH₃F and PF₃. It crystallizes in the tetragonal system, space group $P42_1m$, with two molecules in a unit cell of dimensions a = 8.465(3) Å and c = 5.674(2) Å with R = 0.0564 for 185 observed $[I \ge 2\sigma(I)]$ reflections. The structure can be derived from a cubic closest packing of tetrahedral N(CH₃)₄⁺ cations and pseudo-trigonal bipyramidal PF₄ anions. These anions possess two axial fluorine ligands and an equatorial plane which contains the remaining two fluorine ligands and one sterically active free valence electron pair. This plane is subject to a threefold disorder with unequal occupancy factors. Since the disorder involves a free valence electron pair which is shorter and more repulsive than the P-F bonds, the apparent equatorial P-F bond lengths are much too short and the apparent bond angles differ significantly from those predicted by the ab initio calculations for the free PF₄ ion. However, good agreement between the apparent and calculated geometries can be reached by correction of the calculated geometry for the disorder effects. Hence, the geometry of the ordered, free PF₄ ion must be very close to the calculated one. The calculated structure of ordered PF₄ is similar to that of isoelectronic SF₄, but differs significantly from those found for the corresponding tetra-chlorides or -bromides which are deformed toward ionic $X^- \cdots MX_3$ -type structures. The hydrolysis and methanolysis of $N(CH_3)_4PF_4$ were studied by their material balances and multinuclear NMR and vibrational spectroscopy. With an equimolar amount of water in CH_3CN solution, PF_4^- forms HPO_2F^- and HPF_5^- in a 1:1 mole ratio. With an excess of water, HPO_2F^- is the sole product which was also obtained by the hydrolysis of HPF_5^- . In the presence of a large excess of F^- , the hydrolysis of PF_4^- with an equimolar amount of water produces POF_2^- . The resulting $N(CH_3)_4POF_2$ is the first known example of a stable POF_2^- salt. The geometries and vibrational spectra of POF_2^- and HPO_2F^- were calculated using local density functional theory, and normal coordinate analyses were carried out for POF_2^- , HPO_2F^- and the isoelectronic SOF_2 and HSO_2F molecules. The methanolysis of PF_4^- produces $PF_2(OCH_3)$ and $PF(OCH_3)_2$ as the main products. The new HPF₅⁻ salt, N(CH₃)₄HPF₅, was prepared and the infrared and Raman spectra of N(CH₃)₄HPF₅ and CsHPF₅ recorded. The spectra were assigned with the help of ab initio molecular orbital and local density functional calculations, and a normal coordinate analysis was carried out. For comparison, the unknown isoelectronic molecule HSF₅ was also calculated by the same methods. The internal stretching force constants of HPF₅⁻ are compared to those of closely related phosphorus and sulfur fluorides and hydrides and confirm the existence of a *cis* effect in these hydrogen-substituted Main Group hexafluorides. The observed substitution effects are explained in terms of a hypervalent bonding scheme and result in a preferential weakening of the four equatorial *cis* bonds. ^{*} Corresponding author.